Equivalence relations, invariants, and normal forms
نویسندگان
چکیده
For an equivalence relation E on the words in some finite alphabet, we consider the recognition problem (decide whether two words are equivalent), the invariant problem (calculate a function constant on precisely the equivalence classes), the normal form problem (calculate a particular member of an equivalence class, given an arbitrary member) and the first member problem (calculate the first member of an equivalence class, given an arbitrary member). A solution for any of these problems yields solutions for all earlier ones in the list. We show that, for polynomial time recognizable E, the first member problem is always in the class Az (solvable in polynomial time with an oracle for an NP set) and can be complete for this class even when the normal form problem is solvable in polynomial time. To distinguish between the other problems in the list, we construct an E whose invariant problem is not solvable in polynomial time with an oracle for E (although the first member problem is in NPz fqco-NPZ), and we construct an E whose normal form problem is not solvable in polynomial time with an oracle for a certain solution of its
منابع مشابه
On certain semigroups of transformations that preserve double direction equivalence
Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).
متن کاملDerived Classification of Gentle Algebras with Two Cycles
Abstract. We classify gentle algebras defined by quivers with two cycles under derived equivalence in a non degenerate case, by using some combinatorial invariants constructed from the quiver with relations defining these algebras. We also present a list of normal forms; any such algebra is derived equivalent to one of the algebras in the list. The article includes an Appendix presenting a slig...
متن کاملSignature submanifolds for some equivalence problems
This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.
متن کاملMoving Frames for Pseudo–Groups. II. Differential Invariants for Submanifolds
This paper is the second in a series that develops a theory of moving frames for pseudogroup actions. In this paper, we define a moving frame for free pseudo-group action on the submanifolds, illustrated by explicit examples. Our methods, based on the consequential moving frame connection, provides an effective means for explicitly determining complete systems of differential invariants and inv...
متن کاملTopological Invariants for Lines
A set of topological invariants for relations between lines embedded in the 2-dimensional Euclidean space is given. The set of invariants is proven to be necessary and sufficient to characterize topological equivalence classes of binary relations between simple lines. The topology of arbitrarily complex geometric scenes is described with a variation of the same set of invariants. Polynomial tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Comput.
دوره 13 شماره
صفحات -
تاریخ انتشار 1983